miércoles, 6 de julio de 2016

FUENTE DE PODER

FUENTE DE PODER

Las fuentes de alimentación para dispositivos electrónicos, pueden clasificarse básicamente como fuentes de alimentación lineales y conmutadas. Las lineales tienen un diseño relativamente simple, que puede llegar a ser más complejo cuanto mayor es la corriente que deben suministrar, sin embargo su regulación de tensión es poco eficiente. Una fuente conmutada, de la misma potencia que una lineal, será más pequeña y normalmente más eficiente pero será más compleja y por tanto más susceptible a averías.
Una fuente conmutada es un dispositivo electrónico que transforma la energía eléctrica mediante transistores en conmutación. Mientras que un regulador de tensión utiliza transistores polarizados en su región activa de amplificación, las fuentes conmutadas utilizan los mismos conmutándolos activamente a altas frecuencias (20-100 kHz típicamente) entre corte (abiertos) y saturación (cerrados). La forma de onda cuadrada resultante se aplica a transformadores con núcleo de ferrita (Los núcleos de hierro no son adecuados para estas altas frecuencias) para obtener uno o varios voltajes de salida de corriente alterna (CA) que luego son rectificados (con diodos rápidos) y filtrados (inductores y condensadores) para obtener los voltajes de salida de corriente continua (CC). Las ventajas de este método incluyen menor tamaño y peso del núcleo, mayor eficiencia y por lo tanto menor calentamiento. Las desventajas comparándolas con fuentes lineales es que son más complejas y generan ruido eléctrico de alta frecuencia que debe ser cuidadosamente minimizado para no causar interferencias a equipos próximos a estas fuentes.
Las fuentes conmutadas tienen por esquema: rectificador, conmutador, transformador, otro rectificador y salida.
La regulación se obtiene con el conmutador, normalmente un circuito PWM (pulse with modulation) que cambia el ciclo de trabajo. Aquí las funciones del transformador son las mismas que para fuentes lineales pero su posición es diferente. El segundo rectificador convierte la señal alterna pulsante que llega del transformador en un valor continuo. La salida puede ser también un filtro de condensador o uno del tipo LC.
Las ventajas de las fuentes lineales son una mejor regulación, velocidad y mejores características EMC. Por otra parte las conmutadas obtienen un mejor rendimiento, menor coste y tamaño.

PANEL TRASERO

PANEL TRASERO


Puertos ps/2- Para conectar el teclado y el raton (violeta para el teclado y verde claro para el mouse).




Puertos USB- Para conectar dispositivos con conexión usb. normalmente una placa base trae entre 4 y 8 puertos usb.










Puertos Ethernet- Para conectar cables de red con conectores RJ45. Puede tener 1 o 2 puertos de este tipo. Cuando tiene dos, uno de ellos normalmente es del tipo Gigabit (1000 mbps).







Puerto DVI- Salida de señal de video (monitor) digital. Cada vez son mas las gráficas. sobre todo de gama media y alta. que solo traen este conector.



puerto VGA D-SUB 15. salida de señal de vídeo (monitor) analógica. es el tipo mas utilizado en monitores hasta el momento.cuando solo hay conectores DVI suele venir un adaptador DVI/VGA.


puerto paralelo o LPT. puerto para conectar las impresoras que utilizan este tipo de conexión. cada vez son mas las placas, que no la yean ya que las impresoras actuales se conectan por USB.

salida de audio- para conectar altavoces y micrófono. son del tipo mini jack de 3.5 mm, y dependiendo de chip de sonido pueden ser 3 o 6. 
sus funciones son: 
naranja.- salida de sonido altavoz central y subwoofer. 
negro.- salida de sonido de altavoces trasero.
gris.- salida de sonido de altavoces laterales, (solo en sonido 7.1)-
celeste.-  entrada de sonido en linea.
verde .- salida desonido altavoces principal.
rosa.- entrada de micrófono




puerto serie o COM. ya casi ninguna placa lo lleva integrado en el panel. en algunas vienen en un bracket para conectarse si se quiere.

viernes, 17 de junio de 2016

PLACA BASE

EL CHIPSET
Un chip-set (traducido como circuito integrado auxiliar) es el conjunto de circuitos integrados diseñados con base en la arquitectura de un procesador (en algunos casos, diseñados como parte integral de esa arquitectura), permitiendo que ese tipo de procesadores funcionen en una placa base. Sirven de puente de comunicación con el resto de componentes de la placa, como son la memoria, las tarjetas de expansión, los puertos USB, ratón, teclado, etc.
Las placas base modernas suelen incluir dos integrados, denominados puente norte y puente sur, y suelen ser los circuitos integrados más grandes después de la GPU y el microprocesador. Las últimas placa base carecen de puente norte, ya que los procesadores de última generación lo llevan integrado.
El chipset determina muchas de las características de una placa madre y por lo general la referencia de la misma está relacionada con la delchip-set.
micro-controlador, el procesador no tiene mayor funcionalidad sin el soporte de un chip-set: la importancia del mismo ha sido relegada a un segundo plano por las estrategias de mercadotecnia.
El Chip-set es el que hace posible que la placa base funcione como eje del sistema, dando soporte a varios componentes e interconectándolos de forma que se comuniquen entre ellos haciendo uso de diversos buses. Es uno de los pocos elementos que tiene conexión directa con el procesador, gestiona la mayor parte de la información que entra y sale por el bus principal del procesador, del sistema de vídeo y muchas veces de la memoria RAM.
En el caso de los computadores PC, es un esquema de arquitectura abierta que establece modularidad: el Chip-set debe tener interfaces estándar para los demás dispositivos. Esto permite escoger entre varios dispositivos estándar, por ejemplo en el caso de los buses de expansión, algunas tarjetas madre pueden tener bus PCI-Express y soportar diversos tipos de tarjetas de distintos anchos de bus (1x, 8x, 16x).
En el caso de equipos portátiles o de marca, el chip-set puede ser diseñado a la medida y aunque no soporte gran variedad de tecnologías, presentará alguna interfaz de dispositivo.
La terminología de los integrados ha cambiado desde que se creó el concepto del chip-set a principio de los años 1990, pero todavía existe equivalencia haciendo algunas aclaraciones:
  • El puente norte, northbridgeMCH (memory controller hub) o GMCH (graphic MCH), se usa como puente de enlace entre el microprocesador y la memoria. Controla las funciones de acceso hacia y entre el microprocesador, la memoria RAM, el puerto gráfico AGP o el PCI-Express de gráficos, y las comunicaciones con el puente sur. Al principio tenía también el control de PCI, pero esa funcionalidad ha pasado al puente sur.
  • El puente sur, southbridge o ICH (input controller hub), controla los dispositivos asociados como son la controladora de discos IDE, puertos USB, FireWire, SATA, RAID, ranuras PCI, ranura AMR, ranura CNR, puertos infrarrojos, disquetera,LAN, PCI-Express 1x y una larga lista de todos los elementos que podamos imaginar integrados en la placa madre. Es el encargado de comunicar el procesador con el resto de los periféricos.
En la actualidad los principales fabricantes de chip-sets son AMD, ATI Technologies (comprada en 2006 por AMD), Intel,NVIDIA, Silicon Integrated Systems y VIA Technologies.

TARJETA BASE

TARJETA BASE
La placa base, también conocida como placa madre o placa principal(motherboard o mainboard en inglés), es una tarjeta de circuito impreso a la que se conectan los componentes que constituyen la computadora.
Es una parte fundamental para armar cualquier computadora personal de escritorio o portátil. Tiene instalados una serie de circuitos integrados, entre los que se encuentra el circuito integrado auxiliar (chipset), que sirve como centro de conexión entre el microprocesador (CPU), la memoria de acceso aleatorio (RAM), las ranuras de expansión y otros dispositivos.
Va instalada dentro de una carcasa o gabinete que por lo general está hecha de chapa y tiene un panel para conectar dispositivos externos y muchos conectores internos y zócalos para instalar componentes internos.
La placa madre, además incluye un firmware llamado BIOS, que le permite realizar las funcionalidades básicas, como pruebas de los dispositivos, vídeo y manejo del teclado, reconocimiento de dispositivos y carga del sistema operativo.

Otros componentes importantes

  • El reloj: regula la velocidad de ejecución de las instrucciones del microprocesador y de los periféricos internos.
  • La CMOS: una pequeña memoria que preserva cierta información importante (como la configuración del equipo, fecha y hora), mientras el equipo no está alimentado por electricidad.
    • La pila de la CMOS: proporciona la electricidad necesaria para operar el circuito constantemente y que este último no se apague perdiendo la serie de configuraciones guardadas, como la fecha, hora, secuencia de arranque...
  • El BIOS: un programa registrado en una memoria no volátil (antiguamente en memorias ROM, pero desde hace tiempo se emplean memorias flash). Este programa es específico de la placa base y se encarga de la interfaz de bajo nivel entre el microprocesador y algunos periféricos. Recupera, y después ejecuta, las instrucciones del registro de arranque principal (Master Boot RecordMBR), o registradas en un disco duro o un dispositivo de estado sólido, cuando arranca el sistema operativo.
    • Actualmente, las computadoras modernas sustituyen el MBR por la tabla de particiones GUID (GPT) y el BIOS por Extensible Firmware Interface (EFI).
  • El bus frontal o bus delantero (front-side bus o FSB): también llamado “bus interno”, conecta el microprocesador alchipset. Está cayendo en desuso frente a HyperTransport y Quickpath.
  • El bus de memoria conecta el chipset a la memoria temporal.
  • El bus de expansión (también llamado bus E/S): une el microprocesador a los conectores de entrada/salida y a las ranuras de expansión.
  • Los conectores de entrada/salida que cumplen normalmente con la norma PC 99; estos conectores incluyen:
    • Los puertos serie, para conectar dispositivos antiguos.
    • Los puertos paralelos, para la conexión de impresoras antiguas.
    • Los puertos PS/2 para conectar teclado y ratón; estas interfaces tienden a ser sustituidas por USB.
    • Los puertos USB (en inglés Universal Serial Bus), por ejemplo, para conectar diferentes periféricos, como por ejemplo: mouse, teclado, memoria USB, teléfonos inteligentes, impresoras.
    • Los conectores RJ-45, para conectarse a una red informática.
    • Los conectores VGA, DVI, HDMI o DisplayPort para la conexión del monitor de computadora o proyector de vídeo.
    • Los conectores IDE o Serial ATA, para conectar dispositivos de almacenamiento, tales como discos duros (HDD),dispositivos de estado sólido (SDD) y unidades de disco óptico.
    • Los conectores jacks de audio, para conectar dispositivos de audio, por ejemplo: altavoces y auriculares (código de color: verde), y micrófonos (código de color: rosado).
  • Las ranuras de expansión: se trata de receptáculos (slots) que pueden acoger placas o tarjetas de expansión (estas tarjetas se utilizan para agregar características o aumentar el rendimiento de la computadora; por ejemplo, una tarjeta gráfica se puede añadir para mejorar el rendimiento 3D). Estos puertos pueden ser puertos:
    • ISA (Industry Standard Architecture) interfaz antigua,
    • PCI (Peripheral Component Interconnect),
    • AGP (Accelerated Graphics Port) y,
    • PCIe o PCI-Express, son los más recientes.
  • Con la evolución de las computadoras, más y más características se han integrado en la placa base, tales como circuitos electrónicos para la gestión del vídeo, de sonido o de redes, evitando así la adición de tarjetas de expansión:
    • interfaz gráfica integrada o unidad de procesamiento gráfico (GPUGraphics Processing Unit, o IGP, Integrated Graphic Processor);
    • interfaz integrada de audio o sonido;
    • interfaz integrada Ethernet o puertos de red integrados ((10/100 Mbit/s)/(1 Gbit/s)).
  • En la placa también existen distintos conjuntos de pines, llamados jumpers o puentes, que sirven para configurar otros dispositivos:
    • JMDM1: Sirve para conectar un módem por el cual se puede encender el sistema cuando este recibe una señal.
    • JIR2: Este conector permite conectar módulos de infrarrojos IrDA, teniendo que configurar la BIOS.
    • JBAT1: Se utiliza para poder borrar todas las configuraciones que como usuario podemos modificar y restablecer las configuraciones que vienen de fábrica.
    • JP20: Permite conectar audio en el panel frontal.
    • JFP1 Y JFP2: Se utiliza para la conexión de los interruptores del panel frontal y los ledes.
    • JUSB1 Y JUSB3: Es para conectar puertos USB del panel frontal.
    •   

jueves, 16 de junio de 2016

RANURA PCI

RANURA PCI 
La ranura de expansión (o slot de expansión) es un elemento de la placa base de la computadora, que permite conectarla a una tarjeta de expansión o tarjeta adicional, la cual puede realizar funciones de control de dispositivos periféricos adicionales, por ejemplo: monitores, proyectores, televisores, módems, impresoras o unidades de disco.
Las ranuras están conectadas entre sí. Una computadora personal dispone generalmente de ocho unidades, aunque puede llegar hasta doce.
En las tarjetas madre del tipo LPX las ranuras de expansión no se encuentran sobre la placa sino en un conector especial denominado riser card (tarjeta vertical)
Una tarjeta PCI de tamaño completo tiene un alto de 107 milímetros (4,2 pulgadas) y un largo de 312 mm (12,283 pulgadas). La altura incluye el conector de borde de tarjeta.
Además de estas dimensiones tan grandes y tan invisibles a su vez el tamaño del backplane está también estandarizado. El backplate es la pieza de metal situada en el borde que se utiliza para fijarla al chasis y contiene los conectores externos. La tarjeta puede ser de un tamaño menor, pero el backplate debe ser de tamaño completo y localizado propiamente. Respecto del anterior bus ISA, está situado en el lado opuesto de la placa para evitar errores.
Las tarjetas de media altura son hoy comunes en equipos compactos con chasis Small Form-Factor (SFF), pero el fabricante suele proporcionar dos backplates, con el de altura completa fijado en la tarjeta y el de media altura disponible para una fácil sustitución.

Variantes convencionales de PCI

Las principales versiones de este bus (y por lo tanto de sus respectivas ranuras) son:


    1.  
    2. PCI 1.0: primera versión del bus PCI. Se trata de un bus de 32 bits a 16 MHz.
    3. PCI 2.0: primera versión estandarizada y comercial. Bus de 32 bits a 33 MHz
    4. PCI 2.1: bus de 32 bits, a 66 MHz y señal de 3,3 voltios
    5. PCI 2.2: bus de 32 bits, a 66 MHz, requiriendo 3,3 voltios. Transferencia de hasta 533 MB/s.
    6. PCI 2.3: bus de 32 bits, a 66 MHz. Permite el uso de 3,3 voltios y señalizador universal, pero no soporta señal de 5 voltios en las tarjetas.
    7. PCI 3.0: es el estándar definitivo, ya sin soporte para 5 voltios




    MONITOR LCD

    MONITOR LCD 

    Una pantalla de cristal líquido o LCD (sigla del inglés liquid crystal display) es una pantalla delgada y plana formada por un número de píxeles en color o monocromos colocados delante de una fuente de luz o reflectora. A menudo se utiliza en dispositivos electrónicos de pilas, ya que utiliza cantidades muy pequeñas de energía eléctrica.
    Cada píxel de un LCD típicamente consiste en una capa de moléculas alineadas entre dos electrodos transparentes, y dos filtros de polarización, los ejes de transmisión de cada uno que están (en la mayoría de los casos) perpendiculares entre sí. Sin cristal líquido entre el filtro polarizante, la luz que pasa por el primer filtro sería bloqueada por el segundo (cruzando) polarizador.
    La superficie de los electrodos que están en contacto con los materiales de cristal líquido es tratada a fin de ajustar las moléculas de cristal líquido en una dirección en particular. Este tratamiento suele ser normalmente aplicable en una fina capa de polímero que es unidireccionalmente frotada utilizando, por ejemplo, un paño. La dirección de la alineación de cristal líquido se define por la dirección de frotación.
    Antes de la aplicación de un campo eléctrico, la orientación de las moléculas de cristal líquido está determinada por la adaptación a las superficies. En un dispositivo twisted nematic, TN (uno de los dispositivos más comunes entre los de cristal líquido), las direcciones de alineación de la superficie de los dos electrodos son perpendiculares entre sí, y así se organizan las moléculas en una estructura helicoidal, o retorcida. Debido a que el material es de cristal líquido birrefringente, la luz que pasa a través de un filtro polarizante se gira por la hélice de cristal líquido que pasa a través de la capa de cristal líquido, lo que le permite pasar por el segundo filtro polarizado. La mitad de la luz incidente es absorbida por el primer filtro polarizante, pero por lo demás todo el montaje es transparente.
    Cuando se aplica un voltaje a través de los electrodos, una fuerza de giro orienta las moléculas de cristal líquido paralelas al campo eléctrico, que distorsiona la estructura helicoidal (esto se puede resistir gracias a las fuerzas elásticas desde que las moléculas están limitadas a las superficies). Esto reduce la rotación de la polarización de la luz incidente, y el dispositivo aparece gris. Si la tensión aplicada es lo suficientemente grande, las moléculas de cristal líquido en el centro de la capa son casi completamente desenrolladas y la polarización de la luz incidente no es rotada ya que pasa a través de la capa de cristal líquido. 
    Esta luz será principalmente polarizada perpendicular al segundo filtro, y por eso será bloqueada y el pixel aparecerá negro. Por el control de la tensión aplicada a través de la capa de cristal líquido en cada píxel, la luz se puede permitir pasar a través de distintas cantidades, constituyéndose los diferentes tonos de gris.
    El efecto óptico de un dispositivo twisted nematic (TN) en el estado del voltaje es mucho menos dependiente de las variaciones de espesor del dispositivo que en el estado del voltaje de compensación. Debido a esto, estos dispositivos suelen usarse entre polarizadores cruzados de tal manera que parecen brillantes sin tensión (el ojo es mucho más sensible a las variaciones en el estado oscuro que en el brillante). Estos dispositivos también pueden funcionar en paralelo entre polarizadores, en cuyo caso la luz y la oscuridad son estados invertidos. La tensión de compensación en el estado oscuro de esta configuración aparece enrojecida debido a las pequeñas variaciones de espesor en todo el dispositivo. 
    Tanto el material del cristal líquido como el de la capa de alineación contienen compuestos iónicos. Si un campo eléctrico de una determinada polaridad se aplica durante un período prolongado, este material iónico es atraído hacia la superficie y se degrada el rendimiento del dispositivo. 
    Esto se intenta evitar, ya sea mediante la aplicación de una corriente alterna o por inversión de la polaridad del campo eléctrico que está dirigida al dispositivo (la respuesta de la capa de cristal líquido es idéntica, independientemente de la polaridad de los campos aplicados)

    MONITOR CRT

    MONITOR CRT

    El tubo de rayos catódicos (CRT, del inglés Cathode Ray Tube) es una tecnología que permite visualizar imágenes mediante un haz de rayos catódicos constante dirigido contra una pantalla de vidrio recubierta de fósforo y plomo. El fósforo permite reproducir la imagen proveniente del haz de rayos catódicos, mientras que el plomo bloquea los rayos Xpara proteger al usuario de sus radiaciones. Fue desarrollado por William Crookes en 1875. Se emplea principalmente en monitorestelevisores y osciloscopios, aunque en la actualidad se está sustituyendo paulatinamente por tecnologías comoplasmaLCDLED o DLP.
    Al acercar un imán a un monitor CRT se alterará el magnetismo de la bobina de deflexión y con ello la incidencia del rayo catódico sobre la pantalla. Normalmente causará una deformación en la imagen y problemas con los colores hasta que retiramos el campo magnético.
    La causa más común de magnetización en monitores de ordenador es el campo magnético del transformador de alguna fuente de alimentación cercana.Es posible comprar o construir un dispositivo exterior degausador (también conocido como desmagnetizador), que puede ayudar a desmagnetizar los monitores más viejos o en casos donde es ineficaz el aparato incorporado. Consiste en una bobina que produce un gran campo magnético. Se emplea encendiendo el TV o monitor y mostrando una imagen en el tubo. Se acerca la bobina al centro del monitor se mueve lentamente en círculos concéntricos nunca más anchos del borde del monitor, hasta que los colores incorrectos son eliminados. Este proceso puede necesitar repetirse muchas veces para eliminar algunas magnetizaciones más difíciles. Para un ajuste más perfecto debe emplearse una imagen fija, siendo recomendable el empleo de un generador de señal. El empleo inadecuado de un desmagnetizador puede empeorar el problema.
    Existen monitores profesionales con blindaje electromagnético para usarse en entornos con presencia de campos magnéticos fuertes.
    El tubo de rayos catódicos, o CRT, fue inventado en 1897 por Carl Ferdinand Braun, un científico alemán, pero no se utilizó hasta la creación de los primeros televisores a finales de la década de 1940. El primer televisor fue creado el 26 de enero de 1926 por John Logie Baird. A pesar de que los CRT que se utilizan en los monitores modernos tuvieron muchas modificaciones que les permitieron mejorar la calidad de la imagen, siguen utilizando los mismos principios básicos.
    La primera versión del tubo catódico fue un diodo de cátodo frío, en realidad una modificación del tubo de Crookes con una capa de fósforo sobre el frontal. A este tubo se le llama a veces tubo Braun. La primera versión que utilizaba un cátodo caliente fue desarrollada por J. B. Johnson y H. W. Weinhart de la sociedad Western Electric.